Copied to
clipboard

G = C24.D10order 320 = 26·5

1st non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.1D10, C23.8D20, C23.1Dic10, (C22×C20)⋊1C4, C23.8(C4×D5), C23.D511C4, (C22×C4)⋊1Dic5, (C22×C10).6Q8, (C2×C10).39C42, (C22×C10).41D4, C53(C23.9D4), C22.8(C4×Dic5), C10.38(C23⋊C4), C23.46(C5⋊D4), C2.2(C23⋊Dic5), C22.8(C4⋊Dic5), C23.21(C2×Dic5), (C23×C10).22C22, C22.1(C10.D4), C22.24(C23.D5), C22.16(D10⋊C4), C10.22(C2.C42), C2.4(C10.10C42), (C2×C22⋊C4).2D5, (C2×C10).29(C4⋊C4), (C10×C22⋊C4).1C2, (C2×C23.D5).1C2, (C22×C10).96(C2×C4), (C2×C10).73(C22⋊C4), SmallGroup(320,84)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.D10
C1C5C10C2×C10C22×C10C23×C10C2×C23.D5 — C24.D10
C5C10C2×C10 — C24.D10
C1C22C24C2×C22⋊C4

Generators and relations for C24.D10
 G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=abc, ab=ba, dad-1=eae-1=ac=ca, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=bcd-1 >

Subgroups: 518 in 142 conjugacy classes, 51 normal (21 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C2×C22⋊C4, C2×Dic5, C2×C20, C22×C10, C22×C10, C22×C10, C23.9D4, C23.D5, C23.D5, C5×C22⋊C4, C22×Dic5, C22×C20, C23×C10, C2×C23.D5, C10×C22⋊C4, C24.D10
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, D5, C42, C22⋊C4, C4⋊C4, Dic5, D10, C2.C42, C23⋊C4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C23.9D4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C10.10C42, C23⋊Dic5, C24.D10

Smallest permutation representation of C24.D10
On 80 points
Generators in S80
(2 70)(4 72)(6 74)(8 76)(10 78)(12 80)(14 62)(16 64)(18 66)(20 68)(21 58)(23 60)(25 42)(27 44)(29 46)(31 48)(33 50)(35 52)(37 54)(39 56)
(1 59)(2 60)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 68)(22 69)(23 70)(24 71)(25 72)(26 73)(27 74)(28 75)(29 76)(30 77)(31 78)(32 79)(33 80)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)
(1 69)(2 70)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 79)(12 80)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 58)(22 59)(23 60)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 48 22 10)(2 9 60 30)(3 46 24 8)(4 7 42 28)(5 44 26 6)(11 58 32 20)(12 19 50 40)(13 56 34 18)(14 17 52 38)(15 54 36 16)(21 49 68 79)(23 47 70 77)(25 45 72 75)(27 43 74 73)(29 41 76 71)(31 59 78 69)(33 57 80 67)(35 55 62 65)(37 53 64 63)(39 51 66 61)

G:=sub<Sym(80)| (2,70)(4,72)(6,74)(8,76)(10,78)(12,80)(14,62)(16,64)(18,66)(20,68)(21,58)(23,60)(25,42)(27,44)(29,46)(31,48)(33,50)(35,52)(37,54)(39,56), (1,59)(2,60)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,68)(22,69)(23,70)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,80)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,58)(22,59)(23,60)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,48,22,10)(2,9,60,30)(3,46,24,8)(4,7,42,28)(5,44,26,6)(11,58,32,20)(12,19,50,40)(13,56,34,18)(14,17,52,38)(15,54,36,16)(21,49,68,79)(23,47,70,77)(25,45,72,75)(27,43,74,73)(29,41,76,71)(31,59,78,69)(33,57,80,67)(35,55,62,65)(37,53,64,63)(39,51,66,61)>;

G:=Group( (2,70)(4,72)(6,74)(8,76)(10,78)(12,80)(14,62)(16,64)(18,66)(20,68)(21,58)(23,60)(25,42)(27,44)(29,46)(31,48)(33,50)(35,52)(37,54)(39,56), (1,59)(2,60)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,68)(22,69)(23,70)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,78)(32,79)(33,80)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,58)(22,59)(23,60)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,48,22,10)(2,9,60,30)(3,46,24,8)(4,7,42,28)(5,44,26,6)(11,58,32,20)(12,19,50,40)(13,56,34,18)(14,17,52,38)(15,54,36,16)(21,49,68,79)(23,47,70,77)(25,45,72,75)(27,43,74,73)(29,41,76,71)(31,59,78,69)(33,57,80,67)(35,55,62,65)(37,53,64,63)(39,51,66,61) );

G=PermutationGroup([[(2,70),(4,72),(6,74),(8,76),(10,78),(12,80),(14,62),(16,64),(18,66),(20,68),(21,58),(23,60),(25,42),(27,44),(29,46),(31,48),(33,50),(35,52),(37,54),(39,56)], [(1,59),(2,60),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,68),(22,69),(23,70),(24,71),(25,72),(26,73),(27,74),(28,75),(29,76),(30,77),(31,78),(32,79),(33,80),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67)], [(1,69),(2,70),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,79),(12,80),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,58),(22,59),(23,60),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,48,22,10),(2,9,60,30),(3,46,24,8),(4,7,42,28),(5,44,26,6),(11,58,32,20),(12,19,50,40),(13,56,34,18),(14,17,52,38),(15,54,36,16),(21,49,68,79),(23,47,70,77),(25,45,72,75),(27,43,74,73),(29,41,76,71),(31,59,78,69),(33,57,80,67),(35,55,62,65),(37,53,64,63),(39,51,66,61)]])

62 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4L5A5B10A···10N10O···10V20A···20P
order12222···244444···45510···1010···1020···20
size11112···2444420···20222···24···44···4

62 irreducible representations

dim1111122222222244
type++++-+-+-++
imageC1C2C2C4C4D4Q8D5Dic5D10Dic10C4×D5D20C5⋊D4C23⋊C4C23⋊Dic5
kernelC24.D10C2×C23.D5C10×C22⋊C4C23.D5C22×C20C22×C10C22×C10C2×C22⋊C4C22×C4C24C23C23C23C23C10C2
# reps1218431242484828

Matrix representation of C24.D10 in GL6(𝔽41)

4000000
0400000
001000
000100
0000400
0000040
,
100000
010000
00244000
0011700
00002440
0000117
,
100000
010000
0040000
0004000
0000400
0000040
,
010000
4000000
0000341
0000400
0034100
0040000
,
0320000
3200000
000001
000010
00402400
0017100

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,1,0,0,0,0,40,17,0,0,0,0,0,0,24,1,0,0,0,0,40,17],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,0,34,40,0,0,0,0,1,0,0,0,34,40,0,0,0,0,1,0,0,0],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,0,0,40,17,0,0,0,0,24,1,0,0,0,1,0,0,0,0,1,0,0,0] >;

C24.D10 in GAP, Magma, Sage, TeX

C_2^4.D_{10}
% in TeX

G:=Group("C2^4.D10");
// GroupNames label

G:=SmallGroup(320,84);
// by ID

G=gap.SmallGroup(320,84);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,253,64,387,1684,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=a*b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^-1>;
// generators/relations

׿
×
𝔽